Fluoroplastic PFA Aqueous dispersion
Gujarat Fluorochemicals Ltd.

1.1. Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>Fluoroplastic PFA Aqueous dispersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>INOFLON® PFA 8900, INOFLON® PFA8910</td>
</tr>
<tr>
<td>Other means of</td>
<td>Not Available</td>
</tr>
<tr>
<td>identification</td>
<td></td>
</tr>
</tbody>
</table>

1.2. Relevant identified uses of the substance or mixture and uses advised against

<table>
<thead>
<tr>
<th>Relevant identified uses</th>
<th>Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uses advised against</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

1.3. Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Gujarat Fluorochemicals Ltd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>12/ A Dahej Industrial Estate GIDC India</td>
</tr>
<tr>
<td>Telephone</td>
<td>+91-2641-618003</td>
</tr>
<tr>
<td>Fax</td>
<td>+91-2641-618012</td>
</tr>
<tr>
<td>Website</td>
<td>www.inoflon.com</td>
</tr>
<tr>
<td>Email</td>
<td>inoflon@gfl.co.in</td>
</tr>
</tbody>
</table>

1.4. Emergency telephone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>Gujarat Fluorochemicals Ltd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>+91-2641-618080-81</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>Europe: +49 40 8080 74 529</td>
</tr>
</tbody>
</table>

SECTION 2 HAZARDS IDENTIFICATION

2.1. Classification of the substance or mixture

Classification according to regulation (EC) No 1272/2008 [CLP] [1]

| Classification | H315 - Skin Corrosion/Irritation Category 2, H318 - Serious Eye Damage Category 1 |

Legend:

2.2. Label elements

Hazard pictogram(s)

Signal Word: DANGER
Hazard statement(s)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H315</td>
<td>Causes skin irritation.</td>
</tr>
<tr>
<td>H318</td>
<td>Causes serious eye damage.</td>
</tr>
</tbody>
</table>

Precautionary statement(s) Prevention

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P280</td>
<td>Wear protective gloves/protective clothing/eye protection/face protection.</td>
</tr>
</tbody>
</table>

Precautionary statement(s) Response

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P305+P351+P338</td>
<td>IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.</td>
</tr>
<tr>
<td>P310</td>
<td>Immediately call a POISON CENTER/doctor/physician/first aider.</td>
</tr>
<tr>
<td>P302+P352</td>
<td>IF ON SKIN: Wash with plenty of water and soap.</td>
</tr>
<tr>
<td>P332+P313</td>
<td>If skin irritation occurs: Get medical advice/attention.</td>
</tr>
<tr>
<td>P362+P364</td>
<td>Take off contaminated clothing and wash it before reuse.</td>
</tr>
</tbody>
</table>

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

Not Applicable

2.3. Other hazards

Cumulative effects may result following exposure*.

May produce skin discomfort*.

Limited evidence of a carcinogenic effect*.

Eye contact may produce serious damage*.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

3.1. Substances

See ‘Composition on ingredients’ in Section 3.2

3.2. Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>EC No</th>
<th>Index No</th>
<th>REACH No</th>
<th>% [weight]</th>
<th>Name</th>
<th>Classification according to regulation (EC) No 1272/2008 [CLP]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7732-18-5</td>
<td></td>
<td></td>
<td></td>
<td>35-70</td>
<td>water</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>1.26655-00-5</td>
<td></td>
<td></td>
<td></td>
<td>50-65</td>
<td>tetrafluoroethylene/ perfluoro(perpropylvinylether) copolymer</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>1.60828-78-6</td>
<td></td>
<td></td>
<td></td>
<td>1-5</td>
<td>trimethylolpropyl ether ethoxylated</td>
<td>Acute Toxicity (Oral) Category 4, Chronic Aquatic Hazard Category 4, Serious Eye Damage Category 1, Skin Corrosion/Irritation Category 2; H302, H413, H318, H315 [1]</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

4.1. Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

Continued...
Skin Contact

- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.

- For thermal burns:
 - Decontaminate area around burn.
 - Consider the use of cold packs and topical antibiotics.

- For first-degree burns (affecting top layer of skin)
 - Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides.
 - Use compresses if running water is not available.
 - Cover with sterile non-adhesive bandage or clean cloth.
 - Do NOT apply butter or ointments; this may cause infection.
 - Give over-the-counter pain relievers if pain increases or swelling, redness, fever occur.

- For second-degree burns (affecting top two layers of skin)
 - Cool the burn by immerse in cold running water for 10-15 minutes.
 - Use compresses if running water is not available.
 - Do NOT apply ice as this may lower body temperature and cause further damage.
 - Do NOT break blisters or apply butter or ointments; this may cause infection.
 - Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape.

- To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort):
 - Lay the person flat.
 - Elevate feet about 12 inches.
 - Elevate burn area above heart level, if possible.
 - Cover the person with coat or blanket.
 - Seek medical assistance.

- For third-degree burns
 - Seek immediate medical or emergency assistance.

 - In the mean time:
 - Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound.
 - Separate burned toes and fingers with dry, sterile dressings.
 - Do not soak burn in water or apply ointments or butter; this may cause infection.
 - To prevent shock see above.
 - For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway.
 - Have a person with a facial burn sit up.
 - Check pulse and breathing to monitor for shock until emergency help arrives.

 - In case of burns:
 - Immediately apply cold water to burn either by immersion or wrapping with saturated clean cloth.
 - Do not remove or cut away clothing over burnt areas. Do not pull away clothing which has adhered to the skin as this can cause further injury.
 - Do not break blister or remove solidified material.
 - Quickly cover wound with dressing or clean cloth to help prevent infection and to ease pain.
 - For large burns, sheets, towels or pillow slips are ideal; leave holes for eyes, nose and mouth.
 - Do not apply ointments, oils, butter, etc. to a burn under any circumstances.
 - Water may be given in small quantities if the person is conscious.
 - Alcohol is not to be given under any circumstances.
 - Reassure.
 - Treat for shock by keeping the person warm and in a lying position.
 - Seek medical aid and advise medical personnel in advance of the cause and extent of the injury and the estimated time of arrival of the patient.

Inhalation

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

Ingestion

- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11
4.3. Indication of any immediate medical attention and special treatment needed

Treat symptomatically.
For tetrafluoroethylene (TFE) and other related fluorinated polymers:
Pyrolysis products of this material have been known to produce an influenza-like syndrome in man, lasting 24-48 hours. (ILO)

SECTION 5 FIREFIGHTING MEASURES

5.1. Extinguishing media

Do not direct a solid stream of water or foam into burning molten material; this may cause spattering and spread the fire.
The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas.
Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances.
In such an event consider:
- foam.
- dry chemical powder.
- carbon dioxide.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility None known.

5.3. Advice for firefighters

<table>
<thead>
<tr>
<th>Fire Fighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert Fire Brigade and tell them location and nature of hazard.</td>
</tr>
<tr>
<td>Wear breathing apparatus plus protective gloves in the event of a fire.</td>
</tr>
<tr>
<td>Prevent, by any means available, spillage from entering drains or water courses.</td>
</tr>
<tr>
<td>Use fire fighting procedures suitable for surrounding area.</td>
</tr>
<tr>
<td>Do not approach containers suspected to be hot.</td>
</tr>
<tr>
<td>Cool fire exposed containers with water spray from a protected location.</td>
</tr>
<tr>
<td>If safe to do so, remove containers from path of fire.</td>
</tr>
<tr>
<td>Equipment should be thoroughly decontaminated after use.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fire/Explosion Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>The material is not readily combustible under normal conditions.</td>
</tr>
<tr>
<td>However, it will break down under fire conditions and the organic component may burn.</td>
</tr>
<tr>
<td>Not considered to be a significant fire risk.</td>
</tr>
<tr>
<td>Heat may cause expansion or decomposition with violent rupture of containers.</td>
</tr>
<tr>
<td>Decomposes on heating and may produce toxic fumes of carbon monoxide (CO).</td>
</tr>
<tr>
<td>May emit acrid smoke.</td>
</tr>
<tr>
<td>Decomposes on heating and produces toxic fumes of:</td>
</tr>
<tr>
<td>carbon dioxide (CO2)</td>
</tr>
<tr>
<td>hydrogen fluoride (HF)</td>
</tr>
<tr>
<td>other pyrolysis products typical of burning organic material.</td>
</tr>
<tr>
<td>May emit poisonous fumes.</td>
</tr>
<tr>
<td>May emit corrosive fumes.</td>
</tr>
<tr>
<td>CARE: Contamination of heated / molten liquid with water may cause violent steam explosion, with scattering of hot contents.</td>
</tr>
<tr>
<td>Tetrafluoroethylene (TFE) and related fluorinated polymers does not burn without an external flame.</td>
</tr>
<tr>
<td>WARNING: Wear neoprene gloves when handling refuse from fire where tetrafluoroethylene (TFE) was present.</td>
</tr>
</tbody>
</table>

SECTION 6 ACCIDENTAL RELEASE MEASURES

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

<table>
<thead>
<tr>
<th>Minor Spills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean up all spills immediately.</td>
</tr>
<tr>
<td>Avoid breathing vapours and contact with skin and eyes.</td>
</tr>
<tr>
<td>Control personal contact with the substance, by using protective equipment.</td>
</tr>
<tr>
<td>Contain and absorb spill with sand, earth, inert material or vermiculite.</td>
</tr>
</tbody>
</table>

Continued...
Major Spills

- Wipe up.
- Place in a suitable, labelled container for waste disposal.

Moderate hazard.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

7.1. Precautions for safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- Do not enter confined spaces until atmosphere has been checked.
- Do not allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, do not eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Do not allow clothing wet with material to stay in contact with skin

7.2. Conditions for safe storage, including any incompatibilities

Suitable container
- Polyethylene or polypropylene container.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Storage incompatibility

For saturated perfluorocarbons:
- Standard oxidation-reduction potentials do not apply to PFCs. The materials are unaffected by electrochemical reactions and do not dissociate in aqueous media.
- They are essentially already fully oxidised and are unaffected by standard oxidizing agents such as permanganates, chromates, etc. The only known oxidation takes place only at high temperatures by thermal decomposition.
- Likewise, the materials are only reduced under extreme conditions, requiring reducing agents such as elemental sodium Avoid magnesium, aluminium and their alloys, brass and steel.
- The most potentially reactive of this class, the perfluorinated tertiary amines and the quite analogous perfluorinated ethers, are similarly unreactive. Fluorinated tert-amines do not form salts or complexes with strong acids and are not attacked by most oxidizing or reducing agents

For tetrafluoroethylene (TFE) and other related fluorinated polymers:
- Avoid storage with strong oxidising agents, tetrafluoroethylene, hexafluoroethylene, perfluoroisobutylene, carbonyl fluoride and hydrogen fluoride.
- None known

7.3. Specific end use(s)

See section 1.2

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION
8.1. Control parameters

DERIVED NO EFFECT LEVEL (DNEL)
Not Available

PREDICTED NO EFFECT LEVEL (PNEC)
Not Available

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoroplastic PFA Aqueous dispersion</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>tetrafluoroethylene/ perfluoro(propylvinylether) copolymer</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>trimethylfurfuryl ether ethoxylated</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

8.2. Exposure controls

8.2.1. Appropriate engineering controls

For molten materials:
- Provide mechanical ventilation; in general such ventilation should be provided at compounding/ converting areas and at fabricating/ filling work stations where the material is heated. Local exhaust ventilation should be used over and in the vicinity of machinery involved in handling the molten material. Keep dry!!

Processing temperatures may be well above boiling point of water, so wet or damp material may cause a serious steam explosion if used in unvented equipment.

For tetrafluoroethylene (TFE) and other related fluorinated polymers:
- In processes such as extrusion moulding, engineering controls should be designed to draw thermal degeneration products from the workers breathing zone.

NOTE: When hydrogen fluoride is first detected continue to run equipment with the heat source to the polymer turned off. Ventilate the area and remove non-essential personnel from the area. In case of a major decomposition event evacuate all personnel immediately.

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:
- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear approved respirator. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the “capture velocities” of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant:</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapours, degreasing etc., evaporating from tank (in still air).</td>
<td>0.25-0.5 m/s (50-100 f/min)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
</tbody>
</table>
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)
2.5-10 m/s
(500-2000 ft/min.)

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 ft/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

8.2.2. Personal protection

Eye and face protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59; [AS/NZS 1336 or national equivalent]]

Skin protection

See Hand protection below

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers’ technical data should always be taken into account to ensure selection of the most appropriate glove for the task.
Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- When handling hot materials wear heat resistant, elbow length gloves.
- Protective gloves eg. Leather gloves or gloves with Leather facing
- Gloves are not recommended when handling hot objects, materials
- Protective gloves eg. Leather gloves or gloves with Leather facing

Body protection
- See Other protection below

Other protection
- When handling hot or molten liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.
- Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapour exposure.
- CAUTION: Vapours may be irritating.
- Overalls
- P.V.C. apron
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Recommended material(s)

<table>
<thead>
<tr>
<th>GLOVE SELECTION INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glove selection is based on a modified presentation of the:</td>
</tr>
<tr>
<td>"Forsberg Clothing Performance Index".</td>
</tr>
<tr>
<td>The effect(s) of the following substance(s) are taken into account in the</td>
</tr>
<tr>
<td>computer-generated selection:</td>
</tr>
<tr>
<td>Fluoroplastic PFA Aqueous dispersion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTYL</td>
<td>A</td>
</tr>
<tr>
<td>NEOPRENE</td>
<td>A</td>
</tr>
<tr>
<td>FKM</td>
<td>A</td>
</tr>
<tr>
<td>NATURAL RUBBER</td>
<td>C</td>
</tr>
<tr>
<td>PVA</td>
<td>C</td>
</tr>
</tbody>
</table>

* CPI - Chemwatch Performance Index:
A: Good Selection
B: Satisfactory; may degrade after 4 hours continuous immersion
C: Poor to Dangerous Choice for other than short term immersion
NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -
* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

<table>
<thead>
<tr>
<th>Required minimum protection factor</th>
<th>Maximum gas/vapour concentration present in air p.p.m. (by volume)</th>
<th>Half-face Respirator</th>
<th>Full-Face Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10</td>
<td>1000</td>
<td>-AUS / Class 1 P2</td>
<td>-</td>
</tr>
<tr>
<td>up to 50</td>
<td>1000</td>
<td>-</td>
<td>-AUS / Class 1 P2</td>
</tr>
<tr>
<td>up to 50</td>
<td>5000</td>
<td>Airline*</td>
<td>-</td>
</tr>
<tr>
<td>up to 100</td>
<td>5000</td>
<td>-</td>
<td>-2 P2</td>
</tr>
<tr>
<td>up to 100</td>
<td>10000</td>
<td>-</td>
<td>-3 P2</td>
</tr>
<tr>
<td>100+</td>
<td></td>
<td>Airline**</td>
<td></td>
</tr>
</tbody>
</table>

* - Continuous Flow ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. For molten materials:

8.2.3. Environmental exposure controls
See section 12

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

9.1. Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Family of products which vary in their physical properties as a result of variations in production. Data presented here is</th>
</tr>
</thead>
</table>
for typical family member.
|white col liquid

<table>
<thead>
<tr>
<th>Physical state</th>
<th>Liquid</th>
<th>Relative density (Water = 1)</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odour</td>
<td>Not Available</td>
<td>Partition coefficient n-octanol / water</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
<td>Auto-ignition temperature (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>9-11</td>
<td>Decomposition temperature</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>0, freezing point</td>
<td>Viscosity (cSt)</td>
<td>5-30</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>100, Water</td>
<td>Molecular weight (g/mol)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Applicable</td>
<td>Taste</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Available</td>
<td>Oxidising properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
<td>Surface Tension (dyn/cm or mN/m)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
<td>Volatile Component (%vol)</td>
<td>40-60</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Available</td>
<td>Gas group</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Immiscible</td>
<td>pH as a solution (1%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
<td>VOC g/L</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

9.2. Other information
Not Available

SECTION 10 STABILITY AND REACTIVITY

10.1. Reactivity
See section 7.2

10.2. Chemical stability
Unstable in the presence of incompatible materials.
Product is considered stable.
Hazardous polymerisation will not occur.

10.3. Possibility of hazardous reactions
See section 7.2

10.4. Conditions to avoid
See section 7.2

10.5. Incompatible materials
See section 7.2

10.6. Hazardous decomposition products
See section 5.3

SECTION 11 TOXICOLOGICAL INFORMATION

11.1. Information on toxicological effects

The material can cause respiratory irritation in some persons. The body’s response to such irritation can cause further lung damage.

At temperatures of over 400 deg. C the polymer begins to decompose with the reaction becoming faster as temperature rises.

Fumes from burning materials containing TFE irritate the upper airway and may be harmful if exposure is prolonged. Overheated or burnt TFE releases hydrogen fluoride (a highly irritating and corrosive gas) and small amounts of carbonyl fluoride (highly toxic).

Inhaled
Not normally a hazard due to non-volatile nature of product

Processing for an overly long time or processing at overly high temperatures may cause generation and release of highly irritating vapours, which irritate eyes, nose, throat, causing red itching eyes, coughing, sore throat.
The material has not been classified by EC Directives or other classification systems as “harmful by inhalation”. This is because of the lack of corroborating animal or human evidence.

Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapour exposure.

CAUTION: Vapours may be irritating.

Continued...
Ingestion

Overexposure is unlikely in this form. The material has not been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. High molecular weight material; on single acute exposure would be expected to pass through gastrointestinal tract with little change / absorption. Occasionally accumulation of the solid material within the alimentary tract may result in formation of a bezoar (concretion), producing discomfort.

Skin Contact

This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition. Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Open cuts, abraded or irritated skin should not be exposed to this material. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

If applied to the eyes, this material causes severe eye damage.

Chronic

Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Tetratfluoroethylene is used in the treatment for a number of urological disorders. Exposure of some experimental animals by local injection showed persistent chronic inflammatory reaction on histology of the sites taken. Repeated administration of 25% PFA (a derivative of TFE) produced liver and testicular changes but subsequent studies did not reproduce these effects.

This material contains a substantial amount of polymer considered to be of low concern. These are classified under having MWs of between 1000 to 10000 with less than 25% of molecules with MWs under 10; or having a molecular weight average of over 10000. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.

<table>
<thead>
<tr>
<th>Fluoroplastic PFA Aqueous dispersion</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>tetrafluoroethylene/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>perfluoropropylvinylether)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>copolymer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trimethylol ether</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethoxylated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dermal (rabbit) LD50: 4780 mg/kg[2]</td>
<td>Eye (rabbit): 100 mg-SEVERE</td>
</tr>
<tr>
<td></td>
<td>Oral (rat) LD50: 5650 mg/kg[2]</td>
<td>Eye (rabbit): 5 mg - SEVERE</td>
</tr>
</tbody>
</table>

Skin (rabbit): 500 (open) - mild

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.
2. Value obtained from manufacturer's SDS.

Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

WATER

No significant acute toxicological data identified in literature search.

TETRAFLUOROETHYLENE/PERFLUOROPROPYLENE) COPOLYMER

The material may produce peroxisome proliferation. Peroxisomes are single, membrane limited organelles in the cytoplasm that are found in the cells of animals, plants, fungi, and protozoa.

TRIMETHYLOXYL ETHER ETHOXYLATED

Both laboratory and animal testing has shown that there is no evidence for alcohol ethoxylates (AEs) causing genetic damage, mutations or cancer. No adverse reproductive or developmental effects were observed. RTECS No.: WZ 6210000

Fluoroplastic PFA Aqueous dispersion & TETRAFLUOROETHYLENE/PERFLUOROPROPYLENE COPOLYMER

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Continued...
12.1. Toxicity

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Test Duration (HR)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

For tetrafluoroethylene and other related fluorinated polymers:
Ecotoxicity is expected to be low based on the near zero water solubility of the polymer. Material is considered inert and is not expected to be biodegradable or toxic.

Do not discharge into sewers or waterways.

12.2. Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

12.3. Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW (LogKOW = -1.38)</td>
</tr>
</tbody>
</table>

12.4. Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW (KOC = 14.3)</td>
</tr>
</tbody>
</table>

12.5. Results of PBT and vPvB assessment

<table>
<thead>
<tr>
<th>P</th>
<th>B</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevant available data</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>PBT Criteria fulfilled?</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>
12.6. Other adverse effects
No data available

SECTION 13 DISPOSAL CONSIDERATIONS

13.1. Waste treatment methods

<table>
<thead>
<tr>
<th>Product / Packaging disposal</th>
<th>Waste treatment options</th>
<th>Sewage disposal options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Reuse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Recycling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Disposal (if all else fails)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Do not allow wash water from cleaning or process equipment to enter drains.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> It may be necessary to collect all wash water for treatment before disposal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Where in doubt contact the responsible authority.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Recycle wherever possible.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>HAZCHEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Land transport (ADR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number | Not Applicable |
14.2. UN proper shipping name | Not Applicable |
14.3. Transport hazard class(es) | Class | Not Applicable |
| Subrisk | Not Applicable |
14.4. Packing group | Not Applicable |
14.5. Environmental hazard | Not Applicable |
14.6. Special precautions for user | Hazard identification (Kemler) | Not Applicable |
Classification code	Not Applicable
Hazard Label	Not Applicable
Special provisions	Not Applicable
Limited quantity	Not Applicable

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number | Not Applicable |
14.2. UN proper shipping name | Not Applicable |
14.3. Transport hazard class(es) | ICAO/IATA Class | Not Applicable
| ICAO / IATA Subrisk | Not Applicable
| ERG Code | Not Applicable

14.4. Packing group | Not Applicable

14.5. Environmental hazard | Not Applicable

14.6. Special precautions for user | Special provisions | Not Applicable
| Cargo Only Packing Instructions | Not Applicable
| Cargo Only Maximum Qty / Pack | Not Applicable
| Passenger and Cargo Packing Instructions | Not Applicable
| Passenger and Cargo Maximum Qty / Pack | Not Applicable
| Passenger and Cargo Limited Quantity Packing Instructions | Not Applicable
| Passenger and Cargo Limited Maximum Qty / Pack | Not Applicable

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number | Not Applicable

14.2. UN proper shipping name | Not Applicable

14.3. Transport hazard class(es) | IMDG Class | Not Applicable
| IMDG Subrisk | Not Applicable

14.4. Packing group | Not Applicable

14.5. Environmental hazard | Not Applicable

14.6. Special precautions for user | EMS Number | Not Applicable
| Special provisions | Not Applicable
| Limited Quantities | Not Applicable

Inland waterways transport (ADN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number | Not Applicable

14.2. UN proper shipping name | Not Applicable

14.3. Transport hazard class(es) | Not Applicable

14.4. Packing group | Not Applicable

14.5. Environmental hazard | Not Applicable

14.6. Special precautions for user | Classification code | Not Applicable
| Special provisions | Not Applicable
| Limited quantity | Not Applicable
| Equipment required | Not Applicable
| Fire cones number | Not Applicable

14.7. Transport in bulk according to Annex II of MARPOL and the IBC code | Not Applicable

SECTION 15 REGULATORY INFORMATION

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

WATER (7732-18-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS
TETRAFLUOROETHYLENE/ PERFLUORO(PROPYLVINYLETHER) COPOLYMER (26655-00-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS
Not Applicable

TRIMETHYLNONYL ETHER ETHOXYLATED (60828-78-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS
Not Applicable

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable -: Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2015/830; Regulation (EC) No 1272/2008 as updated through ATPs.

15.2. Chemical safety assessment
No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

ECHA SUMMARY

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>CAS number</th>
<th>Index No</th>
<th>ECHA Dossier</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>7732-18-5</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Harmonisation (C&L Inventory)</td>
<td>Hazard Class and Category Code(s)</td>
<td>Pictograms Signal Word Code(s)</td>
<td>Hazard Statement Code(s)</td>
</tr>
<tr>
<td>1</td>
<td>Not Classified</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>2</td>
<td>Flam. Liq. 3; Acute Tox. 3; Skin Corr. 1A; Acute Tox. 2</td>
<td>GHS05; Dgr; GHS02; GHS06</td>
<td>H318; H226; H314; H301; H411</td>
</tr>
</tbody>
</table>

Harmonisation Code 1 = The most prevalent classification. Harmonisation Code 2 = The most severe classification.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>CAS number</th>
<th>Index No</th>
<th>ECHA Dossier</th>
</tr>
</thead>
<tbody>
<tr>
<td>trimethylnonyl ether ethoxylated</td>
<td>60828-78-6</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Harmonisation (C&L Inventory)</td>
<td>Hazard Class and Category Code(s)</td>
<td>Pictograms Signal Word Code(s)</td>
<td>Hazard Statement Code(s)</td>
</tr>
<tr>
<td>1</td>
<td>Eye Dam. 1</td>
<td>GHS05; Dgr</td>
<td>H318</td>
</tr>
<tr>
<td>2</td>
<td>Eye Dam. 1; Eye Irrit. 2; Aquatic Chronic 3; Skin Irrit. 2; Aquatic Chronic 2</td>
<td>GHS05; Dgr; GHS09</td>
<td>H318; H315; H411</td>
</tr>
</tbody>
</table>

Harmonisation Code 1 = The most prevalent classification. Harmonisation Code 2 = The most severe classification.

National Inventory Status

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>N (trimethylnonyl ether ethoxylated; tetrafluoroethylene/ perfluoropropylene) copolymer; water)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINECS / ELINCS / NLP</td>
<td>N (trimethylnonyl ether ethoxylated; tetrafluoroethylene/ perfluoropropylene) copolymer</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>Y</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Y</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend: Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Initial Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/01/2020</td>
<td>16/05/2016</td>
</tr>
</tbody>
</table>
Full text Risk and Hazard codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H226</td>
<td>Flammable liquid and vapour.</td>
</tr>
<tr>
<td>H301</td>
<td>Toxic if swallowed.</td>
</tr>
<tr>
<td>H302</td>
<td>Harmful if swallowed.</td>
</tr>
<tr>
<td>H314</td>
<td>Causes severe skin burns and eye damage.</td>
</tr>
<tr>
<td>H411</td>
<td>Toxic to aquatic life with long lasting effects.</td>
</tr>
<tr>
<td>H413</td>
<td>May cause long lasting harmful effects to aquatic life.</td>
</tr>
</tbody>
</table>

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:
- EN 166 Personal eye-protection
- EN 340 Protective clothing
- EN 374 Protective gloves against chemicals and micro-organisms
- EN 13832 Footwear protecting against chemicals
- EN 133 Respiratory protective devices

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average
PC-STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.